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The shape of a cavity in an elastic orthotropic half-plane, in which vibrations are excited by a point 

source situated on the surface, is determined from the vertical field of displacements on the surface. 

The problem is reduced to a system of three non-linear operator equations, and a linearized 

formulation is proposed for convex cavities. In the final analysis the problem is reduced to solving (1) a 

system of two boundary integral equations over the boundary of a known cavity, which is done by the 

boundary element method, and (2) a linear integral equation of the first kind with a smooth kernel. As 

the problem thus obtained is ill-posed, it is treated by regularixation in Tikhonov’s sense [l]. The effect 

of the initial approximation and the vibration frequency on the efficiency of the proposed algorithm is 

also investigated. 

ANALYSIS of problems of this type is usually based on a diffraction formulation [2-S], which requires either 
the treatment of non-linear operator equations or the minimization of a non-quadratic functional. That 
approach, however, involves certain difficulties, because of the need to identify imperfections near the 

surface of the body. Since measuring the field of displacements at the surface provides the most adequate 
description of the actual imperfection measurement process, the diffraction formulation may be improved 
by making allowance for the effect of a free boundary on which there are a source and a receiver of 
vibrations; thii will be done in what follows. 

1. STATEMENT OF THE PROBLEM 

Consider the steady vibrations of an orthotropic elastic half-plane x3 ~0 with a cavity bounded by a 
convex smooth curve 1. The vibrations are excited by a normal point force of unit strength applied at the 
origin. 

The equations of motion and boundary conditions are (after eliminating the time factor e?‘) 

or~,,+Pw’u[=o, i,i= 1,3 (1.1) 
x, =o, urs =o, (IS3 =-6(x,) 

(x,, XI) E 1. qpj = 0 

where n, are the components of the unit vector along the normal to 1, directed outward relative to the 
elastic medium. 

The components of the stress tensor are related to those of the displacement vector by the generalized 
Hooke’s law 
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011 =clIuI,: +c*3u.,3, 033 =c13u1,1 +c33u3,39 013 =car(u1,, +%,I) 0.2) 

where cy are the elastic constants of the orthotropic material. 
We assume that the vertical field of displacements at the surface xg = 0 is known, i.e. u,(x,, 0) = f(x,), 

xi E [a, b]. The problem is to determine the boundary 1 of the cavity. 
As a first step, we will use a special fundamental solution Uj”)(x, 5) for orthotropic half-planes, 

constructed previously in [6], which satisfies the no-stress condition at the boundary xj =0 and the 
radiation condition at infinity [7], to obtain a representation of the field of displacements inside the elastic 

region 

u,,,(E) = -I’ u\y’ OI, 0 n/(x) ur(x) dlx + &(tr) (1.3) 

The function c$)(x, 5) is found from (1.2) with u, replaced by the fundamental solutions Ujm); u:(g) 
are the displacements caused by the same surface load in an elastic orthotropic half-plane without 

imperfections (“reference” displacements). 
Using the representation (1.3) and formulae for the limiting values of the integral in (1.3) (see [6]), one 

reduces the problem to the following system of operator equations 

1 
2 u,&J) = - 

I 
$?x, Y) n/(x, q(x)dl, + &cV>, Y E l 

(1.4) 
f(t’) = -I G$‘(x, E’) n/(x) u&)d?, + u,” (E’), E’ = (xi , 0) E [as bl 

The unknowns in this system are u, and 1. We note that, in the previous analysis of a system of this type 
in the diffraction formulation, for vibrations of an elastic isotropic plane with a cavity [5], the last equation 
in (1.4) was replaced by an equation that made it possible to compute the far-field pattern, which was thus 

supposed to be given. 

2. LINEARIZED FORMULATION 

To solve system (1.4), we linearize the problem in the neighbourhood of a known state. We know that, 
in so doing, one has to construct the Frechet derivative of the non-linear operator generated by system 

(1.4)-a difficult task owing to the singularities of Eq. (1.4). To avoid this situation, we proceed as 

follows: consider formula (1.3) for a plane with a cavity 1, of known shape, slightly different from I and 

enclosing it; quantities relating to the medium with the cavity I,, will be marked by a zero superscript 

Consider the difference 

&l(E) = - 1/ o,jm’ (x. El +> u; (xl dlx + u;(E) (2.1) 
0 

(2.2) 

Transforming the integrals along the contours I and I,, assumed to be close to each other, we obtain 

u,(t) - uO,w = -rl $%x, 0 (u&x) - uf (xl) nJ (xl db - 
0 

-1 (o$~‘(x, I) q(x))s j dx) dlx (2.3) 

(v(x) is a function characterizing the distance between the curves I0 and 1 along the inward normal to I,). 
Assuming in addition that u,(x)= up(x), we obtain from (2.3) a simple version of the linearized problem, 

in which the first two equations of (1.4) apply to the boundary of the known contour 6, 
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1 

-T”,@)=+ * @)(x. y)n$(x) u?(x) dl, + t&y>, i @ m = 1,3, y E I, (2.4) 
0 

while the third is an integral equation of the first kind with smooth kernel (since the cavity &, lies strictly 
in the interior of the lower half-plane xg d 0, then mit~,.~, t’ei5 I x- 5’ Ia c > 0) 

where z&e) is determined from (2.1). 
System (2.4), (2.5) for the three unknown functions up(x), v(x) may be solved successively: one first 

finds U:(X) from (2.4) and then derives v(x) from (2.5). 

3. DISCRETIZATION OF THE SYSTEM OF INTEGRAL EQUATIONS 

As a first step one uses the boundary element method [8] to solve the singular equations (2.5) 

approximately. The boundary 6@ is approximated by a polygon with sides (elements) I,, on each of them 
U:(X)= ui are assumed to be constant, while the nodal elements U: are determined by solving a linear 
algebraic system (a similar discretization method was used in [3] to treat the inverse problem in the 
diffraction setting) 

1 N 
_&p=- 
2 

C B,~wufq+t&, p=1,2...N 
q=1 

(y, is the midpoint of 6,). After finding the nodal values of the displacements from (3.1), one can 
calculate the field inside the elastic half-plane with a cavity I,, using the following representation 

N 

&s(C) = - c &?irqw qq + QE> (3.3) 
q=t 

.and, thanks to the equations of motion (l.l), Eq. (2.5) becomes 

(3.4) 

After suitably parameterizing the 4th element x1 = xlp + &, xg = xjq +&t, t E [-1, 11, we finally obtain 

1 N 

g(E’) = Pa ! c d3)(x +Pqr, 6’) fJ” 0’ 
_1 9=1 t q 

1q lq.tP:q)‘V(xq+Pqt)dt. t’~ [a.bl (3.5) 

which is a Fredholm equation of the first kind over a closed interval. The solution of this equation is 
an ill-posed problem [l]. The solution (3.5) was constructed with the aid of algorithms that provide 
Tikhonov-type regularizations and used prior information on the solution, e.g. that the unknown function 

v(x) is monotone and non-negative on each element 1,. This is done in practice by linear approximation 

of v(n) on S,, using regularizing algorithms on sets of well-posedness. Incidentally, the simplest 
approximation, setting V~ equal to constants on each element, as proposed for a circular cavity in [9], does 
not produce good results. 
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4. NUMERICAL RESULTS 

Using the above linearized formulation of the inverse scattering problem and its discretization, we 

examined the shape of a convex cavity in an orthotropic half-plane. As an example, we took an ellipse 
with half-axes 4 = 0.2, 4 = 0.1, and centre at the point (0, -OS), for various inclinations to the x1 axis. We 
used 8 and 16 boundary elements at frequencies it = 0.1-0.7 (K = ka, k = ~(pIc~~)~‘*, a = max(d,, 4)). The 
maximum relative errors in detetmining the shape of the ellipse at frequencies IC = 0.1, 0.4, 0.7 were 3, 4.8 
and 9%, respectively. The drop in the performance of the method as K increases is due to the need for a 

finer subdivision of the cavity boundary, non-allowance for the derivatives of the angular displacements 

up, and so on. In general, however, this method has proved to be fairly efficient over a wide range of 
cavity depths and curvatures, especially when one is concerned with such invariant characteristics of 
imperfections as their areas or the length of the arc 1. 

We wish to thank I. I. Vorovich for discussing the results and offering advice. 
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